skip to main content


Search for: All records

Creators/Authors contains: "Walls, Ramona L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large‐scale, species‐level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021–2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.

     
    more » « less
  2. Informed policy and decision-making for food systems, nutritional security, and global health would benefit from standardization and comparison of food composition data, spanning production to consumption. To address this challenge, we present a formal controlled vocabulary of terms, definitions, and relationships within the Compositional Dietary Nutrition Ontology (CDNO, www.cdno.info ) that enables description of nutritional attributes for material entities contributing to the human diet. We demonstrate how ongoing community development of CDNO classes can harmonize trans-disciplinary approaches for describing nutritional components from food production to diet. 
    more » « less
  3. null (Ed.)
    Abstract Sampling the natural world and built environment underpins much of science, yet systems for managing material samples and associated (meta)data are fragmented across institutional catalogs, practices for identification, and discipline-specific (meta)data standards. The Internet of Samples (iSamples) is a standards-based collaboration to uniquely, consistently, and conveniently identify material samples, record core metadata about them, and link them to other samples, data, and research products. iSamples extends existing resources and best practices in data stewardship to render a cross-domain cyberinfrastructure that enables transdisciplinary research, discovery, and reuse of material samples in 21st century natural science. 
    more » « less
  4. Schwartz, Russell (Ed.)
  5. Abstract

    Material samples are indispensable data sources in many natural science, social science, and humanity disciplines. More and more researchers recognize that samples collected in one discipline can be of great value for another. This has motivated organizations that manage a large number of samples to make their holdings accessible to the world. Currently, multiple projects are working to connect natural history and other samples managed by individual institutions or individuals into a universe of samples that follow FAIR principles. This poster reports the progress of the US NSF‐funded iSamples project, in the context of other efforts initiated by US DOE, DiSCCo, BCoN, and GBIF. By October 2021, we will also be able to present an iSamples prototype. We encourage individual organizations that hold material samples to get to know these projects and help shape these projects to realize the goal of a global linked sample cloud that connects all material samples and is accessible to all.

     
    more » « less
  6. Abstract

    Around the world, many species are confined to “Sky Islands,” with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low‐elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly “pushed off the top” by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5–0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.

     
    more » « less
  7. Green plants (Viridiplantae) include around 450,000–500,000 species of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life. 
    more » « less
  8. Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

     
    more » « less